Abstract
Hyperoxic acute lung injury (HALI) is characterized by a cell death response with features of apoptosis and necrosis that is inhibited by IL-11 and other interventions. We hypothesized that Bfl-1/A1, an antiapoptotic Bcl-2 protein, is a critical regulator of HALI and a mediator of IL-11–induced cytoprotection. To test this, we characterized the expression of A1 and the oxygen susceptibility of WT and IL-11 Tg(+) mice with normal and null A1 loci. In WT mice, 100% O2 caused TUNEL+ cell death, induction and activation of intrinsic and mitochondrial-death pathways, and alveolar protein leak. Bcl-2 and Bcl-xl were also induced as an apparent protective response. A1 was induced in hyperoxia, and in A1-null mice, the toxic effects of hyperoxia were exaggerated, Bcl-2 and Bcl-xl were not induced, and premature death was seen. In contrast, IL-11 stimulated A1, diminished the toxic effects of hyperoxia, stimulated Bcl-2 and Bcl-xl, and enhanced murine survival in 100% O2. In A1-null mice, IL-11–induced protection, survival advantage, and Bcl-2 and Bcl-xl induction were significantly decreased. VEGF also conferred protection via an A1-dependent mechanism. In vitro hyperoxia also stimulated A1, and A1 overexpression inhibited oxidant-induced epithelial cell apoptosis and necrosis. A1 is an important regulator of oxidant-induced lung injury, apoptosis, necrosis, and Bcl-2 and Bcl-xl gene expression and a critical mediator of IL-11– and VEGF-induced cytoprotection.
Authors
Chuan Hua He, Aaron B. Waxman, Chun Geun Lee, Holger Link, Morgan E. Rabach, Bing Ma, Qingsheng Chen, Zhou Zhu, Mei Zhong, Keiko Nakayama, Keiichi I. Nakayama, Robert Homer, Jack A. Elias
×
Download this citation for these citation managers:
Or, download this citation in these formats:
If you experience problems using these citation formats, send us feedback.
|
|
|