The most common form of human congenital muscular dystrophy (CMD) is caused by mutations in the laminin-α2 gene. Loss of laminin-α2 function in this autosomal recessive type 1A form of CMD results in neuromuscular dysfunction and, often, early death. Laminin-α2–deficient skeletal muscles in both humans and mice show signs of muscle cell death by apoptosis. To examine the significance of apoptosis in CMD1A pathogenesis, we determined whether pathogenesis in laminin-α2–deficient (Lama2–/–) mice could be ameliorated by inhibiting apoptosis through either (a) inactivation of the proapoptosis protein Bax or (b) overexpression of the antiapoptosis protein Bcl-2 from a muscle-specific transgene. We found that both of these genetic interventions produced a several-fold increase in the lifespan of Lama2–/– mice. Bax inactivation also improved postnatal growth rate and myofiber histology and decreased fixed contractures of Lama2–/– mice. Thus, Bcl-2 family–mediated apoptosis contributes significantly to pathogenesis in the mouse model of CMD1A, and antiapoptosis therapy may be a possible route to amelioration of neuromuscular dysfunction due to laminin-α2 deficiency in humans.
Mahasweta Girgenrath, Janice A. Dominov, Christine A. Kostek, Jeffrey Boone Miller
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 403 | 53 |
97 | 23 | |
Figure | 161 | 0 |
Citation downloads | 40 | 0 |
Totals | 701 | 76 |
Total Views | 777 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.