Inactivation of the growth factor–regulated S6 kinase RSK2 causes Coffin-Lowry syndrome in humans, an X-linked mental retardation condition associated with progressive skeletal abnormalities. Here we show that mice lacking RSK2 develop a progressive skeletal disease, osteopenia due to impaired osteoblast function and normal osteoclast differentiation. The phenotype is associated with decreased expression of Phex, an endopeptidase regulating bone mineralization. This defect is probably not mediated by RSK2-dependent phosphorylation of c-Fos on serine 362 in the C-terminus. However, in the absence of RSK2, c-Fos–dependent osteosarcoma formation is impaired. The lack of c-Fos phosphorylation leads to reduced c-Fos protein levels, which are thought to be responsible for decreased proliferation and increased apoptosis of transformed osteoblasts. Therefore, RSK2-dependent stabilization of c-Fos is essential for osteosarcoma formation in mice and may also be important for human osteosarcomas.
Jean-Pierre David, Denis Mehic, Latifa Bakiri, Arndt F. Schilling, Vice Mandic, Matthias Priemel, Maria Helena Idarraga, Markus O. Reschke, Oskar Hoffmann, Michael Amling, Erwin F. Wagner
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 458 | 52 |
144 | 31 | |
Figure | 243 | 5 |
Supplemental data | 29 | 3 |
Citation downloads | 77 | 0 |
Totals | 951 | 91 |
Total Views | 1,042 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.