Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Version history
  • Article usage
  • Citations to this article

Advertisement

CorrigendumVascular biology Free access | 10.1172/JCI22849C1

The cytoskeletal protein ezrin regulates EC proliferation and angiogenesis via TNF-α-induced transcriptional repression of cyclin A

Raj Kishore, Gangjian Qin, Corinne Luedemann, Evelyn Bord, Allison Hanley, Marcy Silver, Mary Gavin, Young-sup Yoon, David Goukassain, and Douglas W. Losordo

Find articles by Kishore, R. in: PubMed | Google Scholar

Find articles by Qin, G. in: PubMed | Google Scholar

Find articles by Luedemann, C. in: PubMed | Google Scholar

Find articles by Bord, E. in: PubMed | Google Scholar

Find articles by Hanley, A. in: PubMed | Google Scholar

Find articles by Silver, M. in: PubMed | Google Scholar

Find articles by Gavin, M. in: PubMed | Google Scholar

Find articles by Yoon, Y. in: PubMed | Google Scholar

Find articles by Goukassain, D. in: PubMed | Google Scholar

Find articles by Losordo, D. in: PubMed | Google Scholar

Published October 1, 2005 - More info

Published in Volume 115, Issue 10 on October 3, 2005
J Clin Invest. 2005;115(10):2955–2955. https://doi.org/10.1172/JCI22849C1.
© 2005 The American Society for Clinical Investigation
Published October 1, 2005 - Version history
View PDF

Related article:

The cytoskeletal protein ezrin regulates EC proliferation and angiogenesis via TNF-α–induced transcriptional repression of cyclin A
Raj Kishore, … , David Goukassain, Douglas W. Losordo
Raj Kishore, … , David Goukassain, Douglas W. Losordo
Research Article Vascular biology

The cytoskeletal protein ezrin regulates EC proliferation and angiogenesis via TNF-α–induced transcriptional repression of cyclin A

  • Text
  • PDF
Abstract

TNF-α modulates EC proliferation and thereby plays a central role in new blood vessel formation in physiologic and pathologic circumstances. TNF-α is known to downregulate cyclin A, a key cell cycle regulatory protein, but little else is known about how TNF-α modulates EC cell cycle and angiogenesis. Using primary ECs, we show that ezrin, previously considered to act primarily as a cytoskeletal protein and in cytoplasmic signaling, is a TNF-α–induced transcriptional repressor. TNF-α exposure leads to Rho kinase–mediated phosphorylation of ezrin, which translocates to the nucleus and binds to cell cycle homology region repressor elements within the cyclin A promoter. Overexpression of dominant-negative ezrin blocks TNF-α–induced modulation of ezrin function and rescues cyclin A expression and EC proliferation. In vivo, blockade of ezrin leads to enhanced transplanted EC proliferation and angiogenesis in a mouse hind limb ischemia model. These observations suggest that TNF-α regulates angiogenesis via Rho kinase induction of a transcriptional repressor function of the cytoskeletal protein ezrin and that ezrin may represent a suitable therapeutic target for processes dependent on EC proliferation.

Authors

Raj Kishore, Gangjian Qin, Corinne Luedemann, Evelyn Bord, Allison Hanley, Marcy Silver, Mary Gavin, David Goukassain, Douglas W. Losordo

×

Original citation: J. Clin. Invest.115:1785 –1796 (2005). doi:10.1172/JCI22849

Citation for this corrigendum: J. Clin. Invest.115:2955 (2005). doi:10.1172/JCI22849C1

The name of one of the authors, Young-sup Yoon, was omitted from the original author list. The corrected author list is shown above.

In the original publication, the authors inadvertently included identical representative images for the postoperative laser Doppler images in Figure 7A (middle panels). The correct version of Figure 7A follows.

The authors regret these errors.

Version history
  • Version 1 (October 1, 2005): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts