An α1-adrenergic receptor (α1-AR) antagonist increased heart failure in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT), but it is unknown whether this adverse result was due to α1-AR inhibition or a nonspecific drug effect. We studied cardiac pressure overload in mice with double KO of the 2 main α1-AR subtypes in the heart, α1A (Adra1a) and α1B (Adra1b). At 2 weeks after transverse aortic constriction (TAC), KO mouse survival was only 60% of WT, and surviving KO mice had lower ejection fractions and larger end-diastolic volumes than WT mice. Mechanistically, final heart weight and myocyte cross-sectional area were the same after TAC in KO and WT mice. However, KO hearts after TAC had increased interstitial fibrosis, increased apoptosis, and failed induction of the fetal hypertrophic genes. Before TAC, isolated KO myocytes were more susceptible to apoptosis after oxidative and β-AR stimulation, and β-ARs were desensitized. Thus, α1-AR deletion worsens dilated cardiomyopathy after pressure overload, by multiple mechanisms, indicating that α1-signaling is required for cardiac adaptation. These results suggest that the adverse cardiac effects of α1-antagonists in clinical trials are due to loss of α1-signaling in myocytes, emphasizing concern about clinical use of α1-antagonists, and point to a revised perspective on sympathetic activation in heart failure.
Timothy D. O’Connell, Philip M. Swigart, M.C. Rodrigo, Shinji Ishizaka, Shuji Joho, Lynne Turnbull, Laurence H. Tecott, Anthony J. Baker, Elyse Foster, William Grossman, Paul C. Simpson
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 854 | 44 |
55 | 28 | |
Figure | 336 | 7 |
Table | 44 | 0 |
Citation downloads | 77 | 0 |
Totals | 1,366 | 79 |
Total Views | 1,445 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.