Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell–mediated immunotherapy
Jonathan D. Silk, … , Adrian L. Harris, Vincenzo Cerundolo
Jonathan D. Silk, … , Adrian L. Harris, Vincenzo Cerundolo
Published December 15, 2004
Citation Information: J Clin Invest. 2004;114(12):1800-1811. https://doi.org/10.1172/JCI22046.
View: Text | PDF
Article Immunology

Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell–mediated immunotherapy

  • Text
  • PDF
Abstract

Activation of invariant CD1d-dependent NK T cells (iNKT cells) in vivo through administration of the glycolipid ligand α-galactosylceramide (α-GalCer) or the sphingosine-truncated α-GalCer analog OCH leads to CD40 signaling as well as the release of soluble molecules including type 1 and γ interferons that contribute to DC maturation. This process enhances T cell immunity to antigens presented by the DC. The adjuvant activity is further amplified if APCs are stimulated through Toll-like receptor 4, suggesting that iNKT cell signals can amplify maturation induced by microbial stimuli. The adjuvant activity of α-GalCer enhances both priming and boosting of CD8+ T cells to coadministered peptide or protein antigens, including a peptide encoding the clinically relevant, HLA-A2–restricted epitope of the human tumor antigen NY-ESO-1. Importantly, α-GalCer was used to induce CD8+ T cells to antigens delivered orally, despite the fact that this route of administration is normally associated with blunted responses. Only T cell responses induced in the presence of iNKT cell stimulation, whether by the i.v. or oral route, were capable of eradicating established tumors. Together these data highlight the therapeutic potential of iNKT cell ligands in vaccination strategies, particularly “heterologous prime-boost” strategies against tumors, and provide evidence that iNKT cell stimulation may be exploited in the development of oral vaccines.

Authors

Jonathan D. Silk, Ian F. Hermans, Uzi Gileadi, Tsung Wen Chong, Dawn Shepherd, Mariolina Salio, Bini Mathew, Richard R. Schmidt, Sarah Jane Lunt, Kaye J. Williams, Ian J. Stratford, Adrian L. Harris, Vincenzo Cerundolo

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Injection of iNKT cell ligands induces maturation of splenic DCs, increa...
Injection of iNKT cell ligands induces maturation of splenic DCs, increasing their immunostimulatory capacity. (A) Animals were treated i.v. with 1 μg of α-GalCer or its analog OCH, or with 25 μg of the TLR4 ligand MPL, and surface expression of CD86 was assessed on splenic CD11c+ cells 24 hours later relative to that of cells from vehicle-treated animals (gray filled histograms). C3H/HeJ mice, which have a mutation in TLR4, or iNKT cell–deficient mice were used along with their respective controls (C3H/HeN and C57BL/6). (B) Surface expression of CD86 on CD11c+ cells was assessed on splenocytes from wild-type C57BL/6 or CD1d–/– mice or a mixture of splenocytes from both (Mixed), stimulated in vitro with (thick solid lines) or without α-GalCer (gray filled histograms) for 16 hours. (C) Mean fluorescence intensity of CD86 (± SE) assessed on CD11c+ cells from the spleens of IFN-γ receptor–deficient and type I IFN receptor–deficient animals that had received α-GalCer or vehicle 16 hours previously. (D) The immunostimulatory capacity of splenic CD11c+ cells from α-GalCer– or vehicle-treated C57BL/6 (B6) animals was assessed by loading with OVA257–264 peptide ex vivo and transferring antigen-loaded cells into naive C57BL/6 and iNKT cell–deficient recipients (n = 5) (arrows indicate direction of DC transfer). OVA257–264–specific CD8+ T cell responses in recipient animals were measured in the blood by FACS analysis using H-2Kb/OVA257–264 tetramers 7 days after transfer. Mean proportions of tetramer+ cells as a percentage of CD8+ cells (± SE) are shown. (E) Inset shows expression of CD86 on splenic CD11c+ cells from C57BL/6 mice injected with vehicle (gray filled histogram), α-GalCer (thick dashed line), MPL (thin dashed line), or α-GalCer plus MPL (thick solid line). Graph shows OVA257–264–specific CD8+ T cell responses enumerated in the blood by FACS analysis 7 days after administration of 400 μg OVA with various combinations of vehicle, α-GalCer, or MPL.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts