The collecting ducts of the kidney are composed of intercalated cells (responsible for acid/base transport), principal cells (mediating salt and water absorption), and inner medullary cells, which mediate all three types of transport. Forkhead box (Fox) genes are a large family of transcription factors that are important in cell-type specification during organogenesis. In this issue, Blomqvist et al. find that mice lacking Foxi1 have no intercalated cells in the kidney . The collecting ducts of the null mice contained primitive cells that expressed both intercalated cell and principal cell proteins, yet the acid/base transport function of the kidney was disrupted and the mice exhibited distal renal tubular acidosis. These findings suggest that Foxi1 plays a critical role in determining cell identity during collecting duct development.
Qais Al-Awqati, George J. Schwartz
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 397 | 47 |
61 | 15 | |
Citation downloads | 67 | 0 |
Totals | 525 | 62 |
Total Views | 587 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.