So far, there is very limited knowledge about the role of Eph kinases, the largest family of receptor tyrosine kinases, in the immune system. Here, using EphB6–/– mice, we demonstrated that in vitro and in vivo T cell responses such as lymphokine secretion, proliferation, and the development of delayed-type skin hypersensitivity and experimental autoimmune encephalitis in EphB6–/– mice were compromised. On the other hand, humoral immune responses, such as serum levels of different Ig isotypes and IgG response to tetanus toxoid, were normal in these mice. Mechanistically, we showed that EphB6 migrated to the aggregated TCRs and rafts after TCR activation. Further downstream, in the absence of EphB6, ZAP-70 activation, LAT phosphorylation, the association of PLCγ1 with SLP-76, and p44/42 MAPK activation were diminished. Thus, we have shown that EphB6 is pivotal in T cell function.
Hongyu Luo, Guang Yu, Johanne Tremblay, Jiangping Wu
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 338 | 65 |
69 | 34 | |
Figure | 289 | 6 |
Citation downloads | 55 | 0 |
Totals | 751 | 105 |
Total Views | 856 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.