Thrombolysis is widely used to intervene in acute ischemic stroke, but reestablishment of circulation may paradoxically initiate a reperfusion injury. Here we describe studies with mice lacking protein kinase Cδ (PKCδ) showing that absence of this enzyme markedly reduces reperfusion injury following transient ischemia. This was associated with reduced infiltration of peripheral blood neutrophils into infarcted tissue and with impaired neutrophil adhesion, migration, respiratory burst, and degranulation in vitro. Total body irradiation followed by transplantation with bone marrow from PKCδ-null mice donors reduced infarct size and improved neurological outcome in WT mice, whereas marrow transplantation from WT donors increased infarction and worsened neurological scores in PKCδ-null mice. These results indicate an important role for neutrophil PKCδ in reperfusion injury and strongly suggest that PKCδ inhibitors could prove useful in the treatment of stroke.
Wen-Hai Chou, Doo-Sup Choi, Hong Zhang, Dezhi Mu, Tom McMahon, Viktor N. Kharazia, Clifford A. Lowell, Donna M. Ferriero, Robert O. Messing
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 644 | 63 |
91 | 43 | |
Figure | 277 | 16 |
Table | 42 | 0 |
Citation downloads | 77 | 0 |
Totals | 1,131 | 122 |
Total Views | 1,253 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.