Computer simulations are potentially effective approaches to unraveling the causes of lethal heart rhythm disorders. In this issue of the JCI, Xie et al. have embedded a well-characterized dynamic mechanism for arrhythmia development in an anatomically realistic computer model of the heart. Their demonstration that this simple mechanism governs the behavior of the complex model may provide a new target for strategies to prevent sudden death.
Robert F. Gilmour Jr.
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 188 | 133 |
74 | 21 | |
Figure | 35 | 3 |
Citation downloads | 43 | 0 |
Totals | 340 | 157 |
Total Views | 497 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.