Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Telomeres, stem cells, senescence, and cancer
Norman E. Sharpless, Ronald A. DePinho
Norman E. Sharpless, Ronald A. DePinho
Published January 15, 2004
Citation Information: J Clin Invest. 2004;113(2):160-168. https://doi.org/10.1172/JCI20761.
View: Text | PDF
Perspective Series Article has an altmetric score of 4

Telomeres, stem cells, senescence, and cancer

  • Text
  • PDF
Abstract

Mammalian aging occurs in part because of a decline in the restorative capacity of tissue stem cells. These self-renewing cells are rendered malignant by a small number of oncogenic mutations, and overlapping tumor suppressor mechanisms (e.g., p16INK4a-Rb, ARF-p53, and the telomere) have evolved to ward against this possibility. These beneficial antitumor pathways, however, appear also to limit the stem cell life span, thereby contributing to aging.

Authors

Norman E. Sharpless, Ronald A. DePinho

×

Figure 4

Options: View larger image (or click on image) Download as PowerPoint
Cell-autonomous vs. non–cell-autonomous aging. Two models for impaired t...
Cell-autonomous vs. non–cell-autonomous aging. Two models for impaired tissue repair are suggested: target cells of aging are shown in gray and senescent cell are shown in blue. In the cell-autonomous case, senescence (or apoptosis) of a progenitor with self-renewal capacity leads to impaired tissue regeneration in old animals. In the non–cell-autonomous case, however, a support cell supplies a factor (X), which is critical for the maintenance of tissue repair. X could be a hormone (e.g., estrogen) acting at a distance or cell-cell interactions (e.g., costimulatory signals from antigen-presenting cells) acting in a paracrine manner. In this model, aging results from the functional loss (e.g., by senescence) of the support cell, which may not be detectable in the tissue of interest.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
Referenced in 2 Wikipedia pages
265 readers on Mendeley
1 readers on CiteULike
See more details