Homozygosity for mutations in ABC transporter A1 (ABCA1) causes Tangier disease, a rare HDL-deficiency syndrome. Whether heterozygosity for genetic variation in ABCA1 also contributes to HDL cholesterol (HDL-C) levels in the general population is presently unclear. We determined whether mutations or single-nucleotide polymorphisms (SNPs) in ABCA1 were overrepresented in individuals with the lowest 1% (n = 95) or highest 1% (n = 95) HDL-C levels in the general population by screening the core promoter and coding region of ABCA1. For all nonsynonymous SNPs identified, we determined the effect of genotype on lipid traits in 9,259 individuals from the general population. Heterozygosity for ABCA1 mutations was identified in 10% of individuals with low HDL-C only. Three of 6 nonsynonymous SNPs (V771M, V825I, and R1587K) were associated with increases or decreases in HDL-C in women in the general population and some with consistent trends in men, determined as isolated single-site effects varying only at the relevant SNP. Finally, these results were consistent over time. In conclusion, we show that at least 10% of individuals with low HDL-C in the general population are heterozygous for mutations in ABCA1 and that both mutations and SNPs in ABCA1 contribute to HDL-C levels in the general population.
Ruth Frikke-Schmidt, Børge G. Nordestgaard, Gorm B. Jensen, Anne Tybjærg-Hansen
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 512 | 71 |
55 | 30 | |
Figure | 174 | 20 |
Table | 161 | 0 |
Supplemental data | 24 | 2 |
Citation downloads | 35 | 0 |
Totals | 961 | 123 |
Total Views | 1,084 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.