Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts
Liyan Zhuang, … , Keith R. Solomon, Michael R. Freeman
Liyan Zhuang, … , Keith R. Solomon, Michael R. Freeman
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):959-968. https://doi.org/10.1172/JCI19935.
View: Text | PDF
Article Oncology Article has an altmetric score of 6

Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts

  • Text
  • PDF
Abstract

Lipid rafts are cholesterol- and sphingolipid-enriched microdomains in cell membranes that regulate phosphorylation cascades originating from membrane-bound proteins. In this study, we tested whether alteration of the cholesterol content of lipid rafts in prostate cancer (PCa) cell membranes affects cell survival mechanisms in vitro and in vivo. Simvastatin, a cholesterol synthesis inhibitor, lowered raft cholesterol content, inhibited Akt1 serine-threonine kinase (protein kinase Bα)/protein kinase B (Akt/PKB) pathway signaling, and induced apoptosis in caveolin- and PTEN-negative LNCaP PCa cells. Replenishing cell membranes with cholesterol reversed these inhibitory and apoptotic effects. Cholesterol also potentiated Akt activation in normal prostate epithelial cells, which were resistant to the apoptotic effects of simvastatin. Elevation of circulating cholesterol in SCID mice increased the cholesterol content and the extent of protein tyrosine phosphorylation in lipid rafts isolated from LNCaP/sHB xenograft tumors. Cholesterol elevation also promoted tumor growth, increased phosphorylation of Akt, and reduced apoptosis in the xenografts. Our results implicate membrane cholesterol in Akt signaling in both normal and malignant cells and provide evidence that PCa cells can become dependent on a cholesterol-regulated Akt pathway for cell survival.

Authors

Liyan Zhuang, Jayoung Kim, Rosalyn M. Adam, Keith R. Solomon, Michael R. Freeman

×

Figure 4

Options: View larger image (or click on image) Download as PowerPoint
High levels of serum cholesterol increase tumor aggressiveness. (A) Seru...
High levels of serum cholesterol increase tumor aggressiveness. (A) Serum cholesterol levels in venous blood after stable elevation using dietary modification for 4 weeks. Values are means ± SD of determinations from 5 animals (P < 0.001). (B) Subcutaneous xenograft tumors were created by subcutaneous injection of LNCaP/sHB cells after stable cholesterol elevation was demonstrated. The tumor take was significantly different between normal and high-cholesterol groups (P < 0.0001). (C) Mice were sacrificed 6 weeks after tumor cell injection. Four representative xenograft tumors from each group are shown. (D) Volume measurements were made at 5 weeks and 6 weeks after tumor cell injection. Median tumor volumes (horizontal lines) for the normal group were 0.077 cm3 (5 weeks) and 0.099 cm3 (6 weeks); median tumor volumes for the hypercholesteremic group were 0.135 cm3 (5 weeks) and 0.141 cm3 (6 weeks) (*P < 0.01; **P < 0.005).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 7 patents
80 readers on Mendeley
See more details