Type X collagen is a short-chain homotrimeric collagen expressed in the hypertrophic zone of calcifying cartilage. The clustering of mutations in the carboxyl-terminal NC1 domain in Schmid metaphyseal chondrodysplasia (SMCD) suggested a critical role for this type X collagen domain, but since no direct analysis of cartilage has been conducted in SMCD patients, the mechanisms of type X collagen dysfunction remain controversial. To resolve this problem, we obtained SMCD growth plate cartilage, determined the type X collagen mutation, and analyzed the expression of mutant and normal type X collagen mRNA and protein. The mutation was a single nucleotide substitution that changed the Tyr632 codon (TAC) to a stop codon (TAA). However, analysis of the expression of the normal and mutant allele transcripts in growth plate cartilage by reverse transcription PCR, restriction enzyme mapping, and a single nucleotide primer extension assay, demonstrated that only normal mRNA was present. The lack of mutant mRNA is most likely the result of nonsense-mediated mRNA decay, a common fate for transcripts carrying premature termination mutations. Furthermore, no mutant protein was detected by immunoblotting cartilage extracts. Our data indicates that a functionally null allele leading to type X collagen haploinsufficiency is the molecular basis of SMCD in this patient.
D Chan, Y M Weng, H K Graham, D O Sillence, J F Bateman
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 106 | 38 |
42 | 35 | |
Citation downloads | 53 | 0 |
Totals | 201 | 73 |
Total Views | 274 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.