E-selectin and P-selectin on dermal postcapillary venules play critical roles in the migration of effector T cells into inflamed skin. P-selectin glycoprotein ligand-1 (PSGL-1) modified by α1,3-fucosyltransferase is the principal selectin ligand on skin-homing T cells and is required for effector T cell entry into inflamed skin. We have previously shown that a fluorinated analog of N-acetylglucosamine peracetylated-4-fluorinated-D-glucosamine (4-F-GlcNAc), inhibits selectin ligand expression on human T cell PSGL-1. To analyze 4-F-GlcNAc efficacy in dampening effector T cell migration to inflamed skin, we elicited allergic contact hypersensitivity (CHS) reactions in mice treated with 4-F-GlcNAc. We also investigated 4-F-GlcNAc efficacy on lymphocyte E-selectin ligand expression in LNs draining antigen-sensitized skin and on other immunological processes requisite for CHS responses. Our results showed that 4-F-GlcNAc treatment attenuated lymphocyte E-selectin ligand expression in skin-draining LNs and prevented CHS reactions. Significant reductions in inflammatory lymphocytic infiltrate were observed, while pathways related to antigenic processing and presentation and naive T cell recognition within skin-draining LNs were unaffected. These data indicate that 4-F-GlcNAc prevents CHS by inhibiting selectin ligand activity and the capacity of effector T cells to enter antigen-challenged skin without affecting the afferent phase of CHS.
Charles J. Dimitroff, Thomas S. Kupper, Robert Sackstein
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 844 | 29 |
155 | 25 | |
Figure | 317 | 3 |
Table | 54 | 0 |
Citation downloads | 75 | 0 |
Totals | 1,445 | 57 |
Total Views | 1,502 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.