HDL and its associated apo, APOE, inhibit S-phase entry of murine aortic smooth muscle cells. We report here that the antimitogenic effect of APOE maps to the N-terminal receptor–binding domain, that APOE and its N-terminal domain inhibit activation of the cyclin A promoter, and that these effects involve both pocket protein–dependent and independent pathways. These antimitogenic effects closely resemble those seen in response to activation of the prostacyclin receptor IP. Indeed, we found that HDL and APOE suppress aortic smooth muscle cell cycle progression by stimulating Cox-2 expression, leading to prostacyclin synthesis and an IP-dependent inhibition of the cyclin A gene. Similar results were detected in human aortic smooth muscle cells and in vivo using mice overexpressing APOE. Our results identify the Cox-2 gene as a target of APOE signaling, link HDL and APOE to IP action, and describe a potential new basis for the cardioprotective effect of HDL and APOE.
Devashish Kothapalli, Ilia Fuki, Kamilah Ali, Sheryl A. Stewart, Liang Zhao, Ron Yahil, David Kwiatkowski, Elizabeth A. Hawthorne, Garret A. FitzGerald, Michael C. Phillips, Sissel Lund-Katz, Ellen Puré, Daniel J. Rader, Richard K. Assoian
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 608 | 21 |
59 | 15 | |
Figure | 276 | 0 |
Citation downloads | 65 | 0 |
Totals | 1,008 | 36 |
Total Views | 1,044 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.