TNF-α has long been regarded as a proimmune cytokine involved in antimicrobial type 1 immunity. However, the precise role of TNF-α in antimicrobial type 1 immunity remains poorly understood. We found that TNF-α–deficient (TNF–/–) mice quickly succumbed to respiratory failure following lung infection with replication-competent mycobacteria, because of apoptosis and necrosis of granuloma and lung structure. Tissue destruction was a result of an uncontrolled type 1 immune syndrome characterized by expansion of activated CD4 and CD8 T cells, increased frequency of antigen-specific T cells, and overproduction of IFN-γ and IL-12. Depletion of CD4 and CD8 T cells decreased IFN-γ levels, prevented granuloma and tissue necrosis, and prolonged the survival of TNF–/– hosts. Early reconstitution of TNF-α by gene transfer reduced the frequency of antigen-specific T cells and improved survival. TNF-α controlled type 1 immune activation at least in part by suppressing T cell proliferation, and this suppression involved both TNF receptor p55 and TNF receptor p75. Heightened type 1 immune activation also occurred in TNF–/– mice treated with dead mycobacteria, live replication-deficient mycobacteria, or mycobacterial cell wall components. Our study thus identifies TNF-α as a type 1 immunoregulatory cytokine whose primary role, different from those of other type 1 cytokines, is to keep an otherwise detrimental type 1 immune response in check.
Anna Zganiacz, Michael Santosuosso, Jun Wang, Tony Yang, Lihao Chen, Maria Anzulovic, Scott Alexander, Brigitte Gicquel, Yonghong Wan, Jonathan Bramson, Mark Inman, Zhou Xing
Increased frequency of antigen-specific IFN-γ–releasing CD4 and CD8 T cells by intracellular cytokine staining