Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle
Jason K. Kim, … , Harvey F. Lodish, Gerald I. Shulman
Jason K. Kim, … , Harvey F. Lodish, Gerald I. Shulman
Published March 1, 2004
Citation Information: J Clin Invest. 2004;113(5):756-763. https://doi.org/10.1172/JCI18917.
View: Text | PDF
Article Metabolism Article has an altmetric score of 3

Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle

  • Text
  • PDF
Abstract

Insulin resistance in skeletal muscle plays a major role in the development of type 2 diabetes and may be causally associated with increases in intramuscular fatty acid metabolites. Fatty acid transport protein 1 (FATP1) is an acyl-CoA synthetase highly expressed in skeletal muscle and modulates fatty acid uptake and metabolism by converting fatty acids into fatty acyl-CoA. To investigate the role of FATP1 in glucose homeostasis and in the pathogenesis of insulin resistance, we examined the effect of acute lipid infusion or chronic high-fat feeding on insulin action in FATP1 KO mice. Whole-body adiposity, adipose tissue expression of adiponectin, intramuscular fatty acid metabolites, and insulin sensitivity were not altered in FATP1 KO mice fed a regular chow diet. In contrast, FATP1 deletion protected the KO mice from fat-induced insulin resistance and intramuscular accumulation of fatty acyl-CoA without alteration in whole-body adiposity. These findings demonstrate an important role of intramuscular fatty acid metabolites in causing insulin resistance and suggest that FATP1 may be a novel therapeutic target for the treatment of insulin resistance and type 2 diabetes.

Authors

Jason K. Kim, Ruth E. Gimeno, Takamasa Higashimori, Hyo-Jeong Kim, Hyejeong Choi, Sandhya Punreddy, Robin L. Mozell, Guo Tan, Alain Stricker-Krongrad, David J. Hirsch, Jonathan J. Fillmore, Zhen-Xiang Liu, Jianying Dong, Gary Cline, Andreas Stahl, Harvey F. Lodish, Gerald I. Shulman

×
Options: View larger image (or click on image) Download as PowerPoint
Metabolic parameters during basal (overnight-fasted) and hyperinsulinemi...

Metabolic parameters during basal (overnight-fasted) and hyperinsulinemic-euglycemic clamp periods in the WT and FATP1 KO mice with or without lipid infusion or high-fat feeding


Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 3 patents
21 readers on Mendeley
See more details