Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Cardiac-specific overexpression of angiotensin II AT2 receptor causes attenuated response to AT1 receptor-mediated pressor and chronotropic effects.
H Masaki, … , M Inada, H Matsubara
H Masaki, … , M Inada, H Matsubara
Published February 1, 1998
Citation Information: J Clin Invest. 1998;101(3):527-535. https://doi.org/10.1172/JCI1885.
View: Text | PDF
Research Article

Cardiac-specific overexpression of angiotensin II AT2 receptor causes attenuated response to AT1 receptor-mediated pressor and chronotropic effects.

  • Text
  • PDF
Abstract

Angiotensin (Ang) II has two major receptor isoforms, AT1 and AT2. Currently, AT1 antagonists are undergoing clinical trials in patients with cardiovascular diseases. Treatment with AT1 antagonists causes elevation of plasma Ang II which selectively binds to AT2 and exerts as yet undefined effects. Cardiac AT2 level is low in adult hearts, whereas its distribution ratio is increased during cardiac remodeling and its action is enhanced by application of AT1 antagonists. Although in AT2 knock-out mice sensitivity to the pressor action of Ang II was increased, underlying mechanisms remain undefined. Here, we report the unexpected finding that cardiac-specific overexpression of the AT2 gene using alpha-myosin heavy chain promoter resulted in decreased sensitivity to AT1-mediated pressor and chronotropic actions. AT2 protein undetectable in the hearts of wild-type mice was overexpressed in atria and ventricles of the AT2 transgenic (TG) mice and the proportions of AT2 relative to AT1 were 41% in atria and 45% in ventricles. No obvious morphological change was observed in the myocardium and there was no significant difference in cardiac development or heart to body weight ratio between wild-type and TG mice. Infusion of Ang II to AT2 TG mice caused a significantly attenuated increase in blood pressure response and the change was completely blocked by pretreatment with AT2 antagonist. This decreased sensitivity to Ang II-induced pressor action was mainly due to the AT2-mediated strong negative chronotropic effect and exerted by circulating Ang II in a physiological range that did not stimulate catecholamine release. Isolated hearts of AT2 transgenic mice perfused using a Langendorff apparatus also showed decreased chronotropic responses to Ang II with no effects on left ventricular dp/dt max values, and Ang II-induced activity of mitogen-activated protein kinase was inhibited in left ventricles in the transgenic mice. Although transient outward K+ current recorded in cardiomyocytes from AT2 TG mice was not influenced by AT2 activation, this study suggested that overexpression of AT2 decreases the sensitivity of pacemaker cells to Ang II. Our results demonstrate that stimulation of cardia AT2 exerts a novel antipressor action by inhibiting AT1-mediated chronotropic effects, and that application of AT1 antagonists to patients with cardiovascular diseases has beneficial pharmacotherapeutic effects of stimulating cardiac AT2.

Authors

H Masaki, T Kurihara, A Yamaki, N Inomata, Y Nozawa, Y Mori, S Murasawa, K Kizima, K Maruyama, M Horiuchi, V J Dzau, H Takahashi, T Iwasaka, M Inada, H Matsubara

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 317 22
PDF 49 24
Citation downloads 71 0
Totals 437 46
Total Views 483
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts