Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 6

See more details

Referenced in 5 patents
79 readers on Mendeley
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI1847

Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective apo-B100.

J Boren, I Lee, W Zhu, K Arnold, S Taylor, and T L Innerarity

Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141-9100, USA. jan.boren@wlab.wall.gu.se

Find articles by Boren, J. in: PubMed | Google Scholar

Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141-9100, USA. jan.boren@wlab.wall.gu.se

Find articles by Lee, I. in: PubMed | Google Scholar

Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141-9100, USA. jan.boren@wlab.wall.gu.se

Find articles by Zhu, W. in: PubMed | Google Scholar

Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141-9100, USA. jan.boren@wlab.wall.gu.se

Find articles by Arnold, K. in: PubMed | Google Scholar

Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141-9100, USA. jan.boren@wlab.wall.gu.se

Find articles by Taylor, S. in: PubMed | Google Scholar

Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141-9100, USA. jan.boren@wlab.wall.gu.se

Find articles by Innerarity, T. in: PubMed | Google Scholar

Published March 1, 1998 - More info

Published in Volume 101, Issue 5 on March 1, 1998
J Clin Invest. 1998;101(5):1084–1093. https://doi.org/10.1172/JCI1847.
© 1998 The American Society for Clinical Investigation
Published March 1, 1998 - Version history
View PDF
Abstract

Familial defective apolipoprotein B100 (FDB) is caused by a mutation of apo-B100 (R3500Q) that disrupts the receptor binding of low density lipoproteins (LDL), which leads to hypercholesterolemia and premature atherosclerosis. In this study, mutant forms of human apo-B were expressed in transgenic mice, and the resulting human recombinant LDL were purified and tested for their receptor-binding activity. Site-directed mutagenesis and other evidence indicated that Site B (amino acids 3,359-3,369) binds to the LDL receptor and that arginine-3,500 is not directly involved in receptor binding. The carboxyl-terminal 20% of apo-B100 is necessary for the R3500Q mutation to disrupt receptor binding, since removal of the carboxyl terminus in FDB LDL results in normal receptor-binding activity. Similarly, removal of the carboxyl terminus of apo-B100 on receptor-inactive VLDL dramatically increases apo-B-mediated receptor-binding activity. We propose that the carboxyl terminus normally functions to inhibit the interaction of apo-B100 VLDL with the LDL receptor, but after the conversion of triglyceride-rich VLDL to smaller cholesterol-rich LDL, arginine-3,500 interacts with the carboxyl terminus, permitting normal interaction between LDL and its receptor. Moreover, the loss of arginine at this site destabilizes this interaction, resulting in receptor-binding defective LDL.

Version history
  • Version 1 (March 1, 1998): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 6
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 5 patents
79 readers on Mendeley
See more details