Intestinal fibrosis is a severe complication of Crohn’s disease, often requiring surgical intervention. Despite extensive research efforts, an effective treatment to prevent or reverse intestinal fibrosis remains elusive. In this issue of the JCI, Zhang, Wang, and colleagues employed single-cell RNA sequencing to uncover mechanisms of the fibrotic process. They identified a key fibroblast subset of TWIST1+FAP+ cells that interacts with CXCL9+ macrophages. TWIST1 emerged as a central regulator of the fibrotic microenvironment, representing a promising therapeutic target for effectively treating intestinal fibrosis.
Giovanni Santacroce, Antonio Di Sabatino
Usage data is cumulative from September 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,602 | 205 |
416 | 48 | |
Figure | 188 | 0 |
Citation downloads | 45 | 0 |
Totals | 2,251 | 253 |
Total Views | 2,504 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.