Hematopoietic stem cells (HSCs) rely on self-renewal to sustain stem cell potential and undergo differentiation to generate mature blood cells. Mitochondrial fatty acid β-oxidation (FAO) is essential for HSC maintenance. However, the role of carnitine palmitoyl transferase 1a (CPT1A), a key enzyme in FAO, remains unclear in HSCs. Using a Cpt1a hematopoiesis-specific conditional-KO (Cpt1aΔ/Δ) mouse model, we found that loss of Cpt1a led to HSC defects, including loss of HSC quiescence and self-renewal and increased differentiation. Mechanistically, we found that loss of Cpt1a resulted in elevated levels of mitochondrial respiratory chain complex components and their activity, as well as increased ATP production and accumulation of mitochondrial ROS in HSCs. Taken together, this suggests hyperactivation of mitochondria and metabolic rewiring via upregulated glucose-fueled oxidative phosphorylation (OXPHOS). In summary, our findings demonstrate an essential role for Cpt1a in HSC maintenance and provide insight into the regulation of mitochondrial metabolism via control of the balance between FAO and glucose-fueled OXPHOS.
Jue Li, Jie Bai, Vincent T. Pham, Michihiro Hashimoto, Maiko Sezaki, Qili Shi, Qiushi Jin, Chenhui He, Amy Armstrong, Tian Li, Mingzhe Pan, Shujun Liu, Yu Luan, Hui Zeng, Paul R. Andreassen, Gang Huang