Sarcoidosis is an inflammatory disease characterized by immune cell–rich granulomas that form in multiple organs. In this issue of the JCI, Sati and colleagues used scRNA-seq and spatial transcriptomics of skin samples from patients with sarcoidosis and non-sarcoidosis granulomatous disease to identify upregulation of a stromal-immune CXCL12/CXCR4 axis and accumulation of type 1 innate lymphoid cells (ILC1s) in sarcoidosis. The accumulation of ILC1s in skin and blood was specific to patients with sarcoidosis and not observed in other granulomatous diseases. The authors used a mouse model of lung granuloma to show that ILCs contribute to granuloma formation and that blockade of CXCR4 reduced the formation of granulomas, providing a proof of concept that sarcoidosis may be treated by CXCR4 blockade to prevent the progression of disease in patients. These results suggest ILC1s could serve as a diagnostic biomarker in sarcoidosis and a potential therapeutic target.
Inchul Cho, Andrew L. Ji
Usage data is cumulative from September 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,853 | 162 |
497 | 67 | |
Figure | 233 | 0 |
Citation downloads | 60 | 0 |
Totals | 2,643 | 229 |
Total Views | 2,872 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.