Production, aggregation, and clearance of the amyloid β peptide (Aβ) are important processes governing the initial pathogenesis of Alzheimer’s disease (AD). Inhibition of β-site amyloid precursor protein (APP) cleaving enzyme (BACE1) (one of two key proteases responsible for Aβ production) as an AD-therapeutic approach so far has failed to yield a successful drug. BACE1 and its homologue BACE2 are frequently inhibited by the same inhibitors. Several genetic and cerebral organoid modeling studies suggest that BACE2 has dose-dependent AD-suppressing activity, which makes its unwanted inhibition potentially counterproductive for AD treatment. The in vivo effects of an unwanted cross inhibition of BACE2 have so far been impossible to monitor because of the lack of an easily accessible pharmacodynamic marker specific for BACE2 cleavage. In this issue of the JCI, work led by Stefan F. Lichtenthaler identifies soluble VEGFR3 (sVEGFR3) as a pharmacodynamic plasma marker for BACE2 activity not shared with BACE1.
Aoife Murray, Ana Muñiz-García, Ivan Alić, Dean Nižetić
sSEZ6L and sVEGFR3 provide pharmacodynamic markers specific to BACE1 and BACE2 cleavage activities.