Cerebral arteriovenous malformations represent the most common form of vascular malformations and can cause recurrent bleeding and hemorrhagic stroke. The current issue of the JCI features an article by Zhao et al. describing a mouse model of cerebral arteriovenous malformations. Endothelial cells lacking matrix Gla protein, a BMP inhibitor, underwent epigenetic changes characteristic of an endothelial-to-mesenchymal fate transition. The authors uncovered a two-step process for this transition controlled by the epigenetic regulator histone deacetylase 2 (HDAC2), which controls endothelial cell differentiation, and by enhancer of zeste homolog 1 (EZH1), which suppressed mesenchymal fate. This discovery provides a promising entry point for preventive pharmacological interventions.
Salim Abdelilah-Seyfried
Usage data is cumulative from August 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,690 | 135 |
586 | 49 | |
Figure | 403 | 0 |
Citation downloads | 70 | 0 |
Totals | 2,749 | 184 |
Total Views | 2,933 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.