The RNA N6-methyladenosine (m6A) reader YTHDF1 is implicated in cancer etiology and progression. We discovered that radiotherapy (RT) increased YTHDF1 expression in dendritic cells (DCs) of PBMCs from patients with cancer, but not in other immune cells tested. Elevated YTHDF1 expression in DCs was associated with poor outcomes for patients receiving RT. We found that loss of Ythdf1 in DCs enhanced the antitumor effects of ionizing radiation (IR) by increasing the cross-priming capacity of DCs across multiple murine cancer models. Mechanistically, IR upregulated YTHDF1 expression in DCs through stimulator of IFN genes/type I IFN (STING/IFN-I) signaling. YTHDF1 in turn triggered STING degradation by increasing lysosomal cathepsins, thereby reducing IFN-I production. We created a YTHDF1 deletion/inhibition prototype DC vaccine that significantly improved the therapeutic effect of RT and radioimmunotherapy in a murine melanoma model. Our findings reveal a layer of regulation between YTHDF1/m6A and STING in response to IR, which opens new paths for the development of YTHDF1-targeting therapies.
Chuangyu Wen, Liangliang Wang, András Piffkó, Dapeng Chen, Xianbin Yu, Katarzyna Zawieracz, Jason Bugno, Kaiting Yang, Emile Z. Naccasha, Fei Ji, Jiaai Wang, Xiaona Huang, Stephen Y. Luo, Lei Tan, Bin Shen, Cheng Luo, Megan E. McNerney, Steven J. Chmura, Ainhoa Arina, Sean Pitroda, Chuan He, Hua Laura Liang, Ralph R. Weichselbaum
Usage data is cumulative from September 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 4,414 | 128 |
1,023 | 28 | |
Figure | 338 | 0 |
Supplemental data | 228 | 6 |
Citation downloads | 53 | 0 |
Totals | 6,056 | 162 |
Total Views | 6,218 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.