Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mice deficient in α-actinin-4 have severe glomerular disease
Claudine H. Kos, … , Robert E. Gerszten, Martin R. Pollak
Claudine H. Kos, … , Robert E. Gerszten, Martin R. Pollak
Published June 1, 2003
Citation Information: J Clin Invest. 2003;111(11):1683-1690. https://doi.org/10.1172/JCI17988.
View: Text | PDF
Article Nephrology Article has an altmetric score of 1

Mice deficient in α-actinin-4 have severe glomerular disease

  • Text
  • PDF
Abstract

Dominantly inherited mutations in ACTN4, which encodes α-actinin-4, cause a form of human focal and segmental glomerulosclerosis (FSGS). By homologous recombination in ES cells, we developed a mouse model deficient in Actn4. Mice homozygous for the targeted allele have no detectable α-actinin-4 protein expression. The number of homozygous mice observed was lower than expected under mendelian inheritance. Surviving mice homozygous for the targeted allele show progressive proteinuria, glomerular disease, and typically death by several months of age. Light microscopic analysis shows extensive glomerular disease and proteinaceous casts. Electron microscopic examination shows focal areas of podocyte foot-process effacement in young mice, and diffuse effacement and globally disrupted podocyte morphology in older mice. Despite the widespread distribution of α-actinin-4, histologic examination of mice showed abnormalities only in the kidneys. In contrast to the dominantly inherited human form of ACTN4-associated FSGS, here we show that the absence of α-actinin-4 causes a recessive form of disease in mice. Cell motility, as measured by lymphocyte chemotaxis assays, was increased in the absence of α-actinin-4. We conclude that α-actinin-4 is required for normal glomerular function. We further conclude that the nonsarcomeric forms of α-actinin (α-actinin-1 and α-actinin-4) are not functionally redundant. In addition, these genetic studies demonstrate that the nonsarcomeric α-actinin-4 is involved in the regulation of cell movement.

Authors

Claudine H. Kos, Tu Cam Le, Sumita Sinha, Joel M. Henderson, Sung Han Kim, Hikaru Sugimoto, Raghu Kalluri, Robert E. Gerszten, Martin R. Pollak

×

Figure 4

Options: View larger image (or click on image) Download as PowerPoint
(a and b) Electron microscopic appearance of kidneys from 10-day-old Act...
(a and b) Electron microscopic appearance of kidneys from 10-day-old Actn4+/+ (a) and Actn4–/– (b) littermates. (c and d) Kidneys from 5-week-old Actn4+/+ (c) and Actn4–/– (d) mice. (e and f) Kidneys from 10-week-old Actn4+/+ (e) and Actn4–/– (f) mice. In all cases, Actn4–/– mice show altered glomerular ultrastructure. In the 10-day-old kidney (b), there is mild disruption of the normal podocyte structure with focal areas of podocyte effacement. The disease is more extensive in the older mice (c and e). (g and h) Early changes in Actn4–/– mice are shown at higher power. As shown in g, some Actn4–/– mice demonstrated areas with duplications, or “blebs,” in the GBM on the subepithelial aspect (arrow). These abnormalities were not seen in the control mice, nor were they present in all Actn4–/– mice. In h, focal areas of foot-process effacement in an Actn4–/– mouse are evident (arrow).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Highlighted by 1 platforms
99 readers on Mendeley
See more details