The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-α2,3sialylation of antibodies and loss of protective activity. IL-10 enhances α2,3sialylation on cell-wall–associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti–Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy.
Chih-Ming Tsai, Irshad A. Hajam, J.R. Caldera, Austin W.T. Chiang, Cesia Gonzalez, Xin Du, Biswa Choudhruy, Haining Li, Emi Suzuki, Fatemeh Askarian, Ty’Tianna Clark, Brian Lin, Igor H. Wierzbicki, Angelica M. Riestra, Douglas J. Conrad, David J. Gonzalez, Victor Nizet, Nathan E. Lewis, George Y. Liu
Usage data is cumulative from December 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 3,046 | 125 |
775 | 26 | |
Figure | 364 | 0 |
Supplemental data | 318 | 3 |
Citation downloads | 46 | 0 |
Totals | 4,549 | 154 |
Total Views | 4,703 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.