Strategies beyond hormone-related therapy need to be developed to improve prostate cancer mortality. Here, we show that FUBP1 and its methylation were essential for prostate cancer progression, and a competitive peptide interfering with FUBP1 methylation suppressed the development of prostate cancer. FUBP1 accelerated prostate cancer development in various preclinical models. PRMT5-mediated FUBP1 methylation, regulated by BRD4, was crucial for its oncogenic effect and correlated with earlier biochemical recurrence in our patient cohort. Suppressed prostate cancer progression was observed in various genetic mouse models expressing the FUBP1 mutant deficient in PRMT5-mediated methylation. A competitive peptide, which was delivered through nanocomplexes, disrupted the interaction of FUBP1 with PRMT5, blocked FUBP1 methylation, and inhibited prostate cancer development in various preclinical models. Overall, our findings suggest that targeting FUBP1 methylation provides a potential therapeutic strategy for prostate cancer management.
Weiwei Yan, Xun Liu, Xuefeng Qiu, Xuebin Zhang, Jiahui Chen, Kai Xiao, Ping Wu, Chao Peng, Xiaolin Hu, Zengming Wang, Jun Qin, Liming Sun, Luonan Chen, Denglong Wu, Shengsong Huang, Lichen Yin, Zhenfei Li
Usage data is cumulative from August 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 3,473 | 490 |
924 | 136 | |
Figure | 602 | 2 |
Supplemental data | 365 | 38 |
Citation downloads | 101 | 0 |
Totals | 5,465 | 666 |
Total Views | 6,131 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.