Cardiac metabolism provides effects that extend beyond the transformation of energy for the heart to operate effectively. Some metabolites also function as signaling molecules and exert transcriptional changes. Heart failure is a progressive pathology in which these metabolite functions falter. In this issue of the JCI, Yang et al. describe a protective effect from a low–branched chain amino acid (BCAA) diet in a mouse model of heart failure. The findings implicate a propionylation mark on histone H3 lysine 23 (H3K23Pr), previously shown to be dependent on the BCAA isoleucine, in transcriptional control of the cardiac stress response. The result underscores the interplay between metabolism and histone acylation, highlighting targeted dietary and pharmacological intervention as a means to decelerate cardiac hypertrophy.
Christina Demetriadou, Daniel S. Kantner, Nathaniel W. Snyder
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 744 | 92 |
175 | 46 | |
Figure | 141 | 0 |
Citation downloads | 67 | 0 |
Totals | 1,127 | 138 |
Total Views | 1,265 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.