Adeno-associated virus (AAV) is a promising in vivo gene delivery platform showing advantages in delivering therapeutic molecules to difficult or undruggable cells. However, natural AAV serotypes have insufficient transduction specificity and efficiency in kidney cells. Here, we developed an evolution-directed selection protocol for renal glomeruli and identified what we believe to be a new vector termed AAV2-GEC that specifically and efficiently targets the glomerular endothelial cells (GEC) after systemic administration and maintains robust GEC tropism in healthy and diseased rodents. AAV2-GEC–mediated delivery of IdeS, a bacterial antibody-cleaving proteinase, provided sustained clearance of kidney-bound antibodies and successfully treated antiglomerular basement membrane glomerulonephritis in mice. Taken together, this study showcases the potential of AAV as a gene delivery platform for challenging cell types. The development of AAV2-GEC and its successful application in the treatment of antibody-mediated kidney disease represents a significant step forward and opens up promising avenues for kidney medicine.
Guochao Wu, Shuya Liu, Julia Hagenstein, Malik Alawi, Felicitas E. Hengel, Melanie Schaper, Nuray Akyüz, Zhouning Liao, Nicola Wanner, Nicola M. Tomas, Antonio Virgilio Failla, Judith Dierlamm, Jakob Körbelin, Shun Lu, Tobias B. Huber
Usage data is cumulative from September 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 4,558 | 483 |
937 | 132 | |
Figure | 878 | 0 |
Table | 158 | 0 |
Supplemental data | 323 | 29 |
Citation downloads | 72 | 0 |
Totals | 6,926 | 644 |
Total Views | 7,570 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.