The surface receptor CD8α is present on 20%–80% of human (but not mouse) NK cells, yet its function on NK cells remains poorly understood. CD8α expression on donor NK cells was associated with a lack of therapeutic responses in patients with leukemia in prior studies, thus, we hypothesized that CD8α may affect critical NK cell functions. Here, we discovered that CD8α– NK cells had improved control of leukemia in xenograft models compared with CD8α+ NK cells, likely due to an enhanced capacity for proliferation. Unexpectedly, we found that CD8α expression was induced on approximately 30% of previously CD8α– NK cells following IL-15 stimulation. These induced CD8α+ (iCD8α+) NK cells had the greatest proliferation, responses to IL-15 signaling, and metabolic activity compared with those that sustained existing CD8α expression (sustained CD8α+) or those that remained CD8α– (persistent CD8α–). These iCD8α+ cells originated from an IL-15Rβhi NK cell population, with CD8α expression dependent on the transcription factor RUNX3. Moreover, CD8A CRISPR/Cas9 deletion resulted in enhanced responses through the activating receptor NKp30, possibly by modulating KIR inhibitory function. Thus, CD8α status identified human NK cell capacity for IL-15–induced proliferation and metabolism in a time-dependent fashion, and its presence had a suppressive effect on NK cell–activating receptors.
Celia C. Cubitt, Pamela Wong, Hannah K. Dorando, Jennifer A. Foltz, Jennifer Tran, Lynne Marsala, Nancy D. Marin, Mark Foster, Timothy Schappe, Hijab Fatima, Michelle Becker-Hapak, Alice Y. Zhou, Kimberly Hwang, Miriam T. Jacobs, David A. Russler-Germain, Emily M. Mace, Melissa M. Berrien-Elliott, Jacqueline E. Payton, Todd A. Fehniger
Usage data is cumulative from May 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 3,299 | 137 |
811 | 44 | |
Figure | 726 | 1 |
Supplemental data | 410 | 3 |
Citation downloads | 93 | 0 |
Totals | 5,339 | 185 |
Total Views | 5,524 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.