Cholera is a global health problem with no targeted therapies. The Ca2+-sensing receptor (CaSR) is a regulator of intestinal ion transport and a therapeutic target for diarrhea, and Ca2+ is considered its main agonist. We found that increasing extracellular Ca2+ had a minimal effect on forskolin-induced Cl– secretion in human intestinal epithelial T84 cells. However, extracellular Mg2+, an often-neglected CaSR agonist, suppressed forskolin-induced Cl– secretion in T84 cells by 65% at physiological levels seen in stool (10 mM). The effect of Mg2+ occurred via the CaSR/Gq signaling that led to cAMP hydrolysis. Mg2+ (10 mM) also suppressed Cl- secretion induced by cholera toxin, heat-stable E. coli enterotoxin, and vasoactive intestinal peptide by 50%. In mouse intestinal closed loops, luminal Mg2+ treatment (20 mM) inhibited cholera toxin–induced fluid accumulation by 40%. In a mouse intestinal perfusion model of cholera, addition of 10 mM Mg2+ to the perfusate reversed net fluid transport from secretion to absorption. These results suggest that Mg2+ is the key CaSR activator in mouse and human intestinal epithelia at physiological levels in stool. Since stool Mg2+ concentrations in patients with cholera are essentially zero, oral Mg2+ supplementation, alone or in an oral rehydration solution, could be a potential therapy for cholera and other cyclic nucleotide–mediated secretory diarrheas.
Livia de Souza Goncalves, Tifany Chu, Riya Master, Parth D. Chhetri, Qi Gao, Onur Cil
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 2,078 | 253 |
472 | 98 | |
Figure | 577 | 10 |
Supplemental data | 136 | 3 |
Citation downloads | 81 | 0 |
Totals | 3,344 | 364 |
Total Views | 3,708 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.