Type I IFNs, a family of cytokines that signal through a single receptor and signaling mechanism, were originally named for their ability to interfere with viral replication. While type II IFN (IFN-γ) largely protects against intracellular bacteria and protozoa, type I IFNs largely protect from viral infections. Inborn errors of immunity in humans have demonstrated this point and its clinical relevance with increasing clarity. In this issue of the JCI, Bucciol, Moens, et al. report the largest series of patients to date with deficiency of STAT2, an important protein for type I IFN signaling. Individuals with STAT2 loss demonstrated a clinical phenotype of viral susceptibility and inflammatory complications, many of which remain poorly understood. These findings further illustrate the very specific and critical role that type I IFNs play in host defense against viruses.
Michael B. Jordan
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 542 | 53 |
188 | 26 | |
Figure | 180 | 0 |
Citation downloads | 94 | 0 |
Totals | 1,004 | 79 |
Total Views | 1,083 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.