Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The role of the ICOS-B7h T cell costimulatory pathway in transplantation immunity
Hiroshi Harada, … , Gordon J. Freeman, Mohamed H. Sayegh
Hiroshi Harada, … , Gordon J. Freeman, Mohamed H. Sayegh
Published July 15, 2003
Citation Information: J Clin Invest. 2003;112(2):234-243. https://doi.org/10.1172/JCI17008.
View: Text | PDF
Article Article has an altmetric score of 4

The role of the ICOS-B7h T cell costimulatory pathway in transplantation immunity

  • Text
  • PDF
Abstract

Inducible costimulatory molecule (ICOS) plays a pivotal role in T cell activation and Th1/Th2 differentiation. ICOS blockade has disparate effects on immune responses depending on the timing of blockade. Its role in transplantation immunity, however, remains incompletely defined. We used a vascularized mouse cardiac allograft model to explore the role of ICOS signaling at different time points after transplantation, targeting immune initiation (early blockade) or the immune effector phase (delayed blockade). In major histocompatibility–mismatched recipients, ICOS blockade prolonged allograft survival using both protocols but did so more effectively in the delayed-treatment group. By contrast, in minor histocompatibility–mismatched recipients, early blockade accelerated rejection and delayed blockade prolonged graft survival. Alloreactive CD4+ T cell expansion and alloantibody production were suppressed in both treatment groups, whereas only delayed blockade resulted in suppression of effector CD8+ T cell generation. After delayed ICOS blockade, there was a diminished frequency of allospecific IL-10–producing cells and an increased frequency of both IFN-γ– and IL-4–producing cells. The beneficial effects of ICOS blockade in regulating allograft rejection were seen in the absence of CD28 costimulation but required CD8+ cells, cytotoxic T lymphocyte antigen-4, and an intact signal transducer and activator of transcription–6 pathway. These data define the complex functions of the ICOS-B7h pathway in regulating alloimmune responses in vivo.

Authors

Hiroshi Harada, Alan D. Salama, Masayuki Sho, Atsushi Izawa, Sigrid E. Sandner, Toshiro Ito, Hisaya Akiba, Hideo Yagita, Arlene H. Sharpe, Gordon J. Freeman, Mohamed H. Sayegh

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Histology of murine cardiac allografts from animals treated with ICOS-B7...
Histology of murine cardiac allografts from animals treated with ICOS-B7h signal blockade. C57BL/6 grafts were harvested from BALB/c recipients 10 days after cardiac transplantation in animals receiving no treatment and either early or delayed anti-ICOS mAb therapy. Rejected grafts from untreated control recipients demonstrated diffuse mononuclear cell infiltration, myocyte destruction, and interstitial hemorrhage (a). There was a scattered inflammatory cell infiltrate in the grafts treated with the early ICOS-B7h blockade (b), whereas few inflammatory cells and preserved cardiac myocytes were seen in the grafts treated with delayed therapy (c). Magnification, ×400 (H&E).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 7 patents
Highlighted by 1 platforms
6 readers on Mendeley
See more details