Advertisement
Retraction Open Access | 10.1172/JCI169986
Find articles by Moon, J. in: JCI | PubMed | Google Scholar
Find articles by Lee, S. in: JCI | PubMed | Google Scholar
Find articles by Park, M. in: JCI | PubMed | Google Scholar
Find articles by Siempos, I. in: JCI | PubMed | Google Scholar
Find articles by Haslip, M. in: JCI | PubMed | Google Scholar
Find articles by Lee, P. in: JCI | PubMed | Google Scholar
Find articles by Yun, M. in: JCI | PubMed | Google Scholar
Find articles by Kim, C. in: JCI | PubMed | Google Scholar
Find articles by Howrylak, J. in: JCI | PubMed | Google Scholar
Find articles by Ryter, S. in: JCI | PubMed | Google Scholar
Find articles by Nakahira, K. in: JCI | PubMed | Google Scholar
Find articles by Choi, A. in: JCI | PubMed | Google Scholar
Published March 15, 2023 - More info
Cellular lipid metabolism has been linked to immune responses; however, the precise mechanisms by which de novo fatty acid synthesis can regulate inflammatory responses remain unclear. The NLRP3 inflammasome serves as a platform for caspase-1–dependent maturation and secretion of proinflammatory cytokines. Here, we demonstrated that the mitochondrial uncoupling protein-2 (UCP2) regulates NLRP3-mediated caspase-1 activation through the stimulation of lipid synthesis in macrophages. UCP2-deficient mice displayed improved survival in a mouse model of polymicrobial sepsis. Moreover, UCP2 expression was increased in human sepsis. Consistently, UCP2-deficient mice displayed impaired lipid synthesis and decreased production of IL-1β and IL-18 in response to LPS challenge. In macrophages, UCP2 deficiency suppressed NLRP3-mediated caspase-1 activation and NLRP3 expression associated with inhibition of lipid synthesis. In UCP2-deficient macrophages, inhibition of lipid synthesis resulted from the downregulation of fatty acid synthase (FASN), a key regulator of fatty acid synthesis. FASN inhibition by shRNA and treatment with the chemical inhibitors C75 and cerulenin suppressed NLRP3-mediated caspase-1 activation and inhibited NLRP3 and pro–IL-1β gene expression in macrophages. In conclusion, our results suggest that UCP2 regulates the NLRP3 inflammasome by inducing the lipid synthesis pathway in macrophages. These results identify UCP2 as a potential therapeutic target in inflammatory diseases such as sepsis.
Jong-Seok Moon, Seonmin Lee, Mi-Ae Park, Ilias I. Siempos, Maria Haslip, Patty J. Lee, Mijin Yun, Chun K. Kim, Judie Howrylak, Stefan W. Ryter, Kiichi Nakahira, Augustine M.K. Choi
Original citation: J Clin Invest. 2015;125(2):665–680. https://doi.org/10.1172/JCI78253
Citation for this retraction: J Clin Invest. 2023;133(6):e169986. https://doi.org/10.1172/JCI169986
Cornell University, Harvard Medical School, and Brigham and Women’s Hospital jointly notified the JCI that Figures 3A, 4D, 7B, and 8B and Supplemental Figures 4 and 7A are not reliable. In accordance with the institutional recommendations, the JCI is retracting this article.
See the related article at UCP2 promotes inflammation in sepsis through FASN-dependent NLRP3-inflammasome activation.