Cystinosis is a lysosomal storage disease that is characterized by the accumulation of dipeptide cystine within the lumen. It is caused by mutations in the cystine exporter, cystinosin. Most of the clinically reported mutations are due to the loss of transporter function. In this study, we identified a rapidly degrading disease variant, referred to as cystinosin(7Δ). We demonstrated that this mutant is retained in the ER and degraded via the ER-associated degradation (ERAD) pathway. Using genetic and chemical inhibition methods, we elucidated the roles of HRD1, p97, EDEMs, and the proteasome complex in cystinosin(7Δ) degradation pathway. Having understood the degradation mechanisms, we tested some chemical chaperones previously used for treating CFTR F508Δ and demonstrated that they could facilitate the folding and trafficking of cystinosin(7Δ). Strikingly, chemical chaperone treatment can reduce the lumenal cystine level by approximately 70%. We believe that our study conclusively establishes the connection between ERAD and cystinosis pathogenesis and demonstrates the possibility of using chemical chaperones to treat cystinosin(7Δ).
Varsha Venkatarangan, Weichao Zhang, Xi Yang, Jess Thoene, Si Houn Hahn, Ming Li
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 1,441 | 209 |
348 | 86 | |
Figure | 635 | 7 |
Supplemental data | 455 | 16 |
Citation downloads | 92 | 0 |
Totals | 2,971 | 318 |
Total Views | 3,289 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.