Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Does loss of bile acid homeostasis make mice melancholy?
David D. Moore
David D. Moore
Published October 15, 2002
Citation Information: J Clin Invest. 2002;110(8):1067-1069. https://doi.org/10.1172/JCI16943.
View: Text | PDF
Commentary

Does loss of bile acid homeostasis make mice melancholy?

  • Text
  • PDF
Abstract

Commentary

Authors

David D. Moore

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Loss of negative feedback regulation in bile acid synthesis in Cyp8b1-kn...
Loss of negative feedback regulation in bile acid synthesis in Cyp8b1-knockout mice. While both wild-type (WT) and mutant mice produce chenodeoxycholic acid (CDCA), Cyp8b1 knockouts lack cholic acid (CA). Contrary to the expectation from the redundant negative feedback mechanisms mediated by the farnesoid X receptor (FXR) and small heterodimer partner (SHP), and also other factors in WT mice, Cyp7a1 expression in the knockout mice is actually increased. The mechanisms whereby the loss of CA results in the loss of negative feedback are unknown.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts