Osteocytes are specialized bone cells that orchestrate skeletal remodeling. Senescent osteocytes are characterized by an activation of cyclin-dependent kinase inhibitor p16Ink4a and have been implicated in the pathogenesis of several bone loss disorders. In this issue of the JCI, Farr et al. have now shown that systemic removal of senescent cells (termed senolysis) prevented age-related bone loss at the spine and femur and mitigated bone marrow adiposity through a robust effect on osteoblasts and osteoclasts, whereas cell-specific senolysis in osteocytes alone was only partially effective. Surprisingly, transplantation of senescent fibroblasts into the peritoneum of young mice caused host osteocyte senescence associated with bone loss. This refined concept of osteocyte senescence and the effects of remote senolysis may help to develop improved senolytic strategies against multisystem aging in bone and beyond.
Lorenz C. Hofbauer, Franziska Lademann, Martina Rauner
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,195 | 160 |
144 | 79 | |
Figure | 112 | 1 |
Citation downloads | 66 | 0 |
Totals | 1,517 | 240 |
Total Views | 1,757 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.