The pulmonary collectins, surfactant proteins A (SP-A) and D (SP-D), have been reported to bind lipopolysaccharide (LPS), opsonize microorganisms, and enhance the clearance of lung pathogens. In this study, we examined the effect of SP-A and SP-D on the growth and viability of Gram-negative bacteria. The pulmonary clearance of Escherichia coli K12 was reduced in SP-A–null mice and was increased in SP-D–overexpressing mice, compared with strain-matched wild-type controls. Purified SP-A and SP-D inhibited bacterial synthetic functions of several, but not all, strains of E. coli, Klebsiella pneumoniae, and Enterobacter aerogenes. In general, rough E. coli strains were more susceptible than smooth strains, and collectin-mediated growth inhibition was partially blocked by coincubation with rough LPS vesicles. Although both SP-A and SP-D agglutinated E. coli K12 in a calcium-dependent manner, microbial growth inhibition was independent of bacterial aggregation. At least part of the antimicrobial activity of SP-A and SP-D was localized to their C-terminal domains using truncated recombinant proteins. Incubation of E. coli K12 with SP-A or SP-D increased bacterial permeability. Deletion of the E. coli OmpA gene from a collectin-resistant smooth E. coli strain enhanced SP-A and SP-D–mediated growth inhibition. These data indicate that SP-A and SP-D are antimicrobial proteins that directly inhibit the proliferation of Gram-negative bacteria in a macrophage- and aggregation-independent manner by increasing the permeability of the microbial cell membrane.
Huixing Wu, Alexander Kuzmenko, Sijue Wan, Lyndsay Schaffer, Alison Weiss, James H. Fisher, Kwang Sik Kim, Francis X. McCormack
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,089 | 235 |
122 | 57 | |
Figure | 679 | 36 |
Citation downloads | 91 | 0 |
Totals | 1,981 | 328 |
Total Views | 2,309 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.