T cell acute lymphoblastic leukemia (T-ALL) is an aggressive immature T cell cancer. Mutations in IL7R have been analyzed genetically, but downstream effector functions such as STAT5A and STAT5B hyperactivation are poorly understood. Here, we studied the most frequent and clinically challenging STAT5BN642H driver in T cell development and immature T cell cancer onset and compared it with STAT5A hyperactive variants in transgenic mice. Enhanced STAT5 activity caused disrupted T cell development and promoted an early T cell progenitor–ALL phenotype, with upregulation of genes involved in T cell receptor (TCR) signaling, even in absence of surface TCR. Importantly, TCR pathway genes were overexpressed in human T-ALL and mature T cell cancers and activation of TCR pathway kinases was STAT5 dependent. We confirmed STAT5 binding to these genes using ChIP-Seq analysis in human T-ALL cells, which were sensitive to pharmacologic inhibition by dual STAT3/5 degraders or ZAP70 tyrosine kinase blockers in vitro and in vivo. We provide genetic and biochemical proof that STAT5A and STAT5B hyperactivation can initiate T-ALL through TCR pathway hijacking and suggest similar mechanisms for other T cell cancers. Thus, STAT5 or TCR component blockade are targeted therapy options, particularly in patients with chemoresistant clones carrying STAT5BN642H.
Tobias Suske, Helena Sorger, Gabriele Manhart, Frank Ruge, Nicole Prutsch, Mark W. Zimmerman, Thomas Eder, Diaaeldin I. Abdallah, Barbara Maurer, Christina Wagner, Susann Schönefeldt, Katrin Spirk, Alexander Pichler, Tea Pemovska, Carmen Schweicker, Daniel Pölöske, Emina Hubanic, Dennis Jungherz, Tony Andreas Müller, Myint Myat Khine Aung, Anna Orlova, Ha Thi Thanh Pham, Kerstin Zimmel, Thomas Krausgruber, Christoph Bock, Mathias Müller, Maik Dahlhoff, Auke Boersma, Thomas Rülicke, Roman Fleck, Elvin Dominic de Araujo, Patrick Thomas Gunning, Tero Aittokallio, Satu Mustjoki, Takaomi Sanda, Sylvia Hartmann, Florian Grebien, Gregor Hoermann, Torsten Haferlach, Philipp Bernhard Staber, Heidi Anne Neubauer, Alfred Thomas Look, Marco Herling, Richard Moriggl
Usage data is cumulative from April 2024 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 3,341 | 566 |
699 | 150 | |
Figure | 1,114 | 8 |
Supplemental data | 435 | 41 |
Citation downloads | 162 | 0 |
Totals | 5,751 | 765 |
Total Views | 6,516 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.