Cholesterol-loaded macrophage foam cells are a central component of atherosclerotic lesions. ABCA1, the defective molecule in Tangier disease, mediates the efflux of phospholipids and cholesterol from cells to apoA-I, reversing foam cell formation. In ABCA1, we identified a sequence rich in proline, glutamic acid, serine, and threonine (PEST sequence) that enhances the degradation of ABCA1 by calpain protease and thereby controls the cell surface concentration and cholesterol efflux activity of ABCA1. In an apparent positive feedback loop, apoA-I binds ABCA1, promotes lipid efflux, inhibits calpain degradation, and leads to increased levels of ABCA1. ApoA-I infusion also increases ABCA1 in vivo. These studies reveal a novel mode of regulation of ABCA1 by PEST sequence–mediated calpain proteolysis that appears to be reversed by apolipoprotein-mediated phospholipid efflux. Inhibition of ABCA1 degradation by calpain could represent a novel therapeutic approach to increasing macrophage cholesterol efflux and decreasing atherosclerosis.
Nan Wang, Wengen Chen, Patrick Linsel-Nitschke, Laurent O. Martinez, Birgit Agerholm-Larsen, David L. Silver, Alan R. Tall
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 762 | 135 |
118 | 37 | |
Figure | 460 | 13 |
Citation downloads | 83 | 0 |
Totals | 1,423 | 185 |
Total Views | 1,608 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.