HIV-1 replication can be suppressed with antiretroviral therapy (ART), but individuals who stop taking ART soon become viremic again. Some people experience extended times of detectable viremia despite optimal adherence to ART. In this issue of the JCI, White, Wu, and coauthors elucidate a source of nonsuppressible viremia (NSV) in treatment-adherent patients — clonally expanded T cells harboring HIV-1 proviruses with small deletions or mutations in the 5′-leader, the UTR that includes the major splice donor site of viral RNA. These mutations altered viral RNA-splicing efficiency and RNA dimerization and packaging, yet still allowed production of detectable levels of noninfectious virus particles. These particles lacked the HIV-1 Env surface protein required for cell entry and failed to form the mature capsid cone required for infectivity. These studies improve our understanding of NSV and the regulation of viral functions in the 5′-leader with implications for rationalized care in individuals with NSV.
Ann Emery, Sarah B. Joseph, Ronald Swanstrom
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 613 | 99 |
126 | 54 | |
Figure | 108 | 0 |
Citation downloads | 83 | 0 |
Totals | 930 | 153 |
Total Views | 1,083 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.