Circadian rhythmicity in renal function suggests rhythmic adaptations in renal metabolism. To decipher the role of the circadian clock in renal metabolism, we studied diurnal changes in renal metabolic pathways using integrated transcriptomic, proteomic, and metabolomic analysis performed on control mice and mice with an inducible deletion of the circadian clock regulator Bmal1 in the renal tubule (cKOt). With this unique resource, we demonstrated that approximately 30% of RNAs, approximately 20% of proteins, and approximately 20% of metabolites are rhythmic in the kidneys of control mice. Several key metabolic pathways, including NAD+ biosynthesis, fatty acid transport, carnitine shuttle, and β-oxidation, displayed impairments in kidneys of cKOt mice, resulting in perturbed mitochondrial activity. Carnitine reabsorption from primary urine was one of the most affected processes with an approximately 50% reduction in plasma carnitine levels and a parallel systemic decrease in tissue carnitine content. This suggests that the circadian clock in the renal tubule controls both kidney and systemic physiology.
Yohan Bignon, Leonore Wigger, Camille Ansermet, Benjamin D. Weger, Sylviane Lagarrigue, Gabriel Centeno, Fanny Durussel, Lou Götz, Mark Ibberson, Sylvain Pradervand, Manfredo Quadroni, Meltem Weger, Francesca Amati, Frédéric Gachon, Dmitri Firsov
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,589 | 248 |
167 | 91 | |
Figure | 536 | 6 |
Supplemental data | 505 | 47 |
Citation downloads | 97 | 0 |
Totals | 2,894 | 392 |
Total Views | 3,286 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.