The RNA polymerase alternative σ factor RpoS in Borrelia burgdorferi (Bb), the Lyme disease pathogen, is responsible for programmatic-positive and -negative gene regulation essential for the spirochete’s dual-host enzootic cycle. RpoS is expressed during tick-to-mammal transmission and throughout mammalian infection. Although the mammalian-phase RpoS regulon is well described, its counterpart during the transmission blood meal is unknown. Here, we used Bb-specific transcript enrichment by tick-borne disease capture sequencing (TBDCapSeq) to compare the transcriptomes of WT and ΔrpoS Bb in engorged nymphs and following mammalian host-adaptation within dialysis membrane chambers. TBDCapSeq revealed dramatic changes in the contours of the RpoS regulon within ticks and mammals and further confirmed that RpoS-mediated repression is specific to the mammalian-phase of Bb’s enzootic cycle. We also provide evidence that RpoS-dependent gene regulation, including repression of tick-phase genes, is required for persistence in mice. Comparative transcriptomics of engineered Bb strains revealed that the Borrelia oxidative stress response regulator (BosR), a noncanonical Fur family member, and the cyclic diguanosine monophosphate (c-di-GMP) effector PlzA reciprocally regulate the function of RNA polymerase complexed with RpoS. BosR is required for RpoS-mediated transcription activation and repression in addition to its well-defined role promoting transcription of rpoS by the RNA polymerase alternative σ factor RpoN. During transmission, ligand-bound PlzA antagonizes RpoS-mediated repression, presumably acting through BosR.
André A. Grassmann, Rafal Tokarz, Caroline Golino, Melissa A. McLain, Ashley M. Groshong, Justin D. Radolf, Melissa J. Caimano
Interplay between RpoS, BosR, and ligand-bound PlzA regulates differential gene expression in feeding nymphal ticks and mammals.