Excessive erythrocytosis (EE) is a major hallmark of patients suffering from chronic mountain sickness (CMS, also known as Monge’s disease) and is responsible for major morbidity and even mortality in early adulthood. We took advantage of unique populations, one living at high altitude (Peru) showing EE, with another population, at the same altitude and region, showing no evidence of EE (non-CMS). Through RNA-Seq, we identified and validated the function of a group of long noncoding RNAs (lncRNAs) that regulate erythropoiesis in Monge’s disease, but not in the non-CMS population. Among these lncRNAs is hypoxia induced kinase-mediated erythropoietic regulator (HIKER)/LINC02228, which we showed plays a critical role in erythropoiesis in CMS cells. Under hypoxia, HIKER modulated CSNK2B (the regulatory subunit of casein kinase 2). A downregulation of HIKER downregulated CSNK2B, remarkably reducing erythropoiesis; furthermore, an upregulation of CSNK2B on the background of HIKER downregulation rescued erythropoiesis defects. Pharmacologic inhibition of CSNK2B drastically reduced erythroid colonies, and knockdown of CSNK2B in zebrafish led to a defect in hemoglobinization. We conclude that HIKER regulates erythropoiesis in Monge’s disease and acts through at least one specific target, CSNK2B, a casein kinase.
Priti Azad, Dan Zhou, Hung-Chi Tu, Francisco C. Villafuerte, David Traver, Tariq M. Rana, Gabriel G. Haddad
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 840 | 243 |
149 | 105 | |
Figure | 320 | 19 |
Table | 47 | 0 |
Supplemental data | 59 | 10 |
Citation downloads | 68 | 0 |
Totals | 1,483 | 377 |
Total Views | 1,860 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.