Muscle fibers express particular isoforms of contractile proteins, depending on the fiber’s function and the organism’s developmental stage. In the adult, after a muscle injury, newly generated fibers transition through embryonic and neonatal myosins, prior to selecting their distinctive adult myosin isoform. In this issue of the JCI, Wang et al. discover a checkpoint that regulates the neonatal-to-adult myosin isoform transition. They found that HIF-1α regulated this checkpoint, with elevated HIF-1α levels blocking progression, while HIF-1α knockout accelerated the transition. They further related these findings to centronuclear myopathy, a disease in which HIF-1α is similarly elevated and neonatal myosin expression is maintained. These findings highlight a maturation checkpoint that impacts the skeletal muscle regeneration following ischemic injury, providing a pharmacologically accessible pathway in injury and diseases such as centronuclear myopathy.
Rahagir Salekeen, Michael Kyba
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 379 | 54 |
82 | 30 | |
Figure | 102 | 0 |
Citation downloads | 68 | 0 |
Totals | 631 | 84 |
Total Views | 715 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.