Neuropathic pain remains poorly managed by current therapies, highlighting the need to improve our knowledge of chronic pain mechanisms. In neuropathic pain models, dorsal root ganglia (DRG) nociceptive neurons transfer miR-21 packaged in extracellular vesicles to macrophages that promote a proinflammatory phenotype and contribute to allodynia. Here we show that miR-21 conditional deletion in DRG neurons was coupled with lack of upregulation of chemokine CCL2 after nerve injury and reduced accumulation of CCR2-expressing macrophages, which showed TGF-β–related pathway activation and acquired an M2-like antinociceptive phenotype. Indeed, neuropathic allodynia was attenuated after conditional knockout of miR-21 and restored by TGF-βR inhibitor (SB431542) administration. Since TGF-βR2 and TGF-β1 are known miR-21 targets, we suggest that miR-21 transfer from injured neurons to macrophages maintains a proinflammatory phenotype via suppression of such an antiinflammatory pathway. These data support miR-21 inhibition as a possible approach to maintain polarization of DRG macrophages at an M2-like state and attenuate neuropathic pain.
Lynda Zeboudj, George Sideris-Lampretsas, Rita Silva, Sabeha Al-Mudaris, Francesca Picco, Sarah Fox, David Chambers, Marzia Malcangio
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,862 | 608 |
242 | 179 | |
Figure | 536 | 5 |
Table | 67 | 0 |
Supplemental data | 87 | 10 |
Citation downloads | 71 | 0 |
Totals | 2,865 | 802 |
Total Views | 3,667 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.