Chronic hepatitis B virus (HBV) infection remains a major global health problem. Hepatitis B surface antigen (HBsAg) loss has been accepted as the definition of a functional HBV cure. Recent studies found that while covalently closed circular DNA (cccDNA) is the predominant source of HBsAg in hepatitis B e antigen–positive (HBeAg-positive) patients, integrated HBV DNA (iDNA) is the main source in HBeAg-negative patients. Consequently, achieving a functional HBV cure will require not only silencing of cccDNA but also iDNA. Assays that distinguish the source of HBsAg are needed to evaluate emerging therapies. In this issue of the JCI, Grudda et al. developed a PCR-based assay that differentiated the source of HBsAg and explored the contributing sources of HBsAg in patients on nucleos(t)ide analog antivirals. These findings provide a tool for understanding the contribution of iDNA in HBV infection and may guide therapies toward a functional HBV cure.
Marc G. Ghany, Anna S. Lok
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 718 | 245 |
137 | 77 | |
Figure | 117 | 1 |
Citation downloads | 68 | 0 |
Totals | 1,040 | 323 |
Total Views | 1,363 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.