Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

The role of the Grb2–p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis
Shaosong Zhang, … , Yibin Wang, Anthony J. Muslin
Shaosong Zhang, … , Yibin Wang, Anthony J. Muslin
Published March 15, 2003
Citation Information: J Clin Invest. 2003;111(6):833-841. https://doi.org/10.1172/JCI16290.
View: Text | PDF
Article Cardiology Article has an altmetric score of 3

The role of the Grb2–p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis

  • Text
  • PDF
Abstract

Cardiac hypertrophy is a common response to pressure overload and is associated with increased mortality. Mechanical stress in the heart can result in the integrin-mediated activation of focal adhesion kinase and the subsequent recruitment of the Grb2 adapter molecule. Grb2, in turn, can activate MAPK cascades via an interaction with the Ras guanine nucleotide exchange factor SOS and with other signaling intermediates. We analyzed the role of the Grb2 adapter protein and p38 MAPK in cardiac hypertrophy. Mice with haploinsufficiency of the Grb2 gene (Grb2+/– mice) appear normal at birth but have defective T cell signaling. In response to pressure overload, cardiac p38 MAPK and JNK activation was inhibited and cardiac hypertrophy and fibrosis was blocked in Grb2+/– mice. Next, transgenic mice with cardiac-specific expression of dominant negative forms of p38α (DN-p38α) and p38β (DN-p38β) MAPK were examined. DN-p38α and DN-p38β mice developed cardiac hypertrophy but were resistant to cardiac fibrosis in response to pressure overload. These results establish that Grb2 action is essential for cardiac hypertrophy and fibrosis in response to pressure overload, and that different signaling pathways downstream of Grb2 regulate fibrosis, fetal gene induction, and cardiomyocyte growth.

Authors

Shaosong Zhang, Carla Weinheimer, Michael Courtois, Attila Kovacs, Cindy E. Zhang, Alec M. Cheng, Yibin Wang, Anthony J. Muslin

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 896 136
PDF 97 50
Figure 367 16
Table 84 0
Citation downloads 51 0
Totals 1,495 202
Total Views 1,697
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 3 patents
71 readers on Mendeley
See more details